

IMPROVING META-ANALYSIS AS A PRACTICAL TOOL FOR VALUING ECOSYSTEM SERVICES

Elena Besedin ¹, Robert J. Johnston ² Ryan Stapler¹

¹Abt Associates, Cambridge, MA, USA ² Clark University, Worcester, MA, USA

ACES, Washington, DC, December 8-12

The findings, conclusions, and views expressed here are those of the author[s] and do not necessarily reflect those of the U.S. EPA. No official Agency endorsement should be inferred.

Benefit Transfer in Economic Analysis of Environmental Regulations

- Cost benefit analysis of environmental regulations rarely affords time and money to conduct primary valuation research
- Benefit transfer (BT) is often the only remaining option for valuing changes in ecosystem services
- Function-based transfers typically outperform unit-value transfers
- BT based on meta-regression models (MRMs) have been increasingly used in years in policy analysis
 - MRMs allow to predict economic values for ecosystem changes at policy sites, based on site characteristics and expected environmental changes
 - Numerous MRMs have been published in recent years
 - MRMs have the potential to generate robust, accurate and broadly applicable benefit functions.

Benefit Transfer in Economic Analysis of Environmental Regulations

- MRMs of surface water valuation studies :
 - Developed for § 316b regulations under Clean Water Act
 - Johnston et al. (2005)
 - CWA effluent limitations guidelines (ELGs) and standards for Construction and Development (C&D);
 - 2005 MRM updated based on new studies (U.S. EPA, 2009)
 - Water quality standards for Florida's estuaries, coastal water, and South Florida inland flowing waters
 - ELGs for Steam Electric power generating sources (proposal)
 - Regulation of stormwater discharges in urban areas

Typical Structure of MRMs: Surface Water Quality

Dependent Variable : WTP for water quality improvements

Independent variables:

- Study methods
- Population
- Water body type
- Water quality change
- Market extent
- Substitute sites
- Spatial resource characteristics

Available from original studies?

- Yes
- Yes
- Yes
- Yes
- Categorical values
- Categorical values/proxies
- Categorical values

Introduction

Core Geospatial Variables Needed for BT

No published MRMs incorporate a full set of quantitative measures needed for developing BT estimates tailored to policy scenarios.

- Need to account for distance decay effect (Bateman et al. 2006):
 - Larger sampled market areas (e.g., states versus watershed) relative to the affected resource smaller mean per household WTP estimates
 (Johnston and Duke 2009).
- WTP is inversely related to the quantity of unaffected substitute resources in close proximity (Schaafsma et al. 2012).

Implications for Benefit Transfer

- Existing MRMs predict the same per household WTP for a given water quality change, regardless of the water body size, the extent of market area, or presence of substitute sites
 - Per household estimates that do not correspond to economic theory
 - Policy analysts use ad hoc adjustments to address models limitations
 - Potential to bias benefit estimates

New Generation MRM

- Meta data: 140 observations from 51 stated preference studies conducted between 1981 and 2011
- Dependent variable: natural log of household WTP for water quality improvements measured on standard 100 point water quality index
- 24 independent variables characterizing: (1) study methodology, (2) populations, (3) water bodies, (4) market areas, (4) substitute sites (5) water quality
- 20 coefficients statistically significant at p<0.10</p>
- Outperforms restricted model that omits core geospatial variables

Revised vs Existing MRMs

- Two alternative market extent variables:
 - The measure of geospatial scale(*In_ar_ratio*) is defined as (natural log of the) size of the sampled market area (sa_area) divided by the total area of counties that intersect with the affected water bodies (*ar_total_area*).
 - Index of geospatial scale and market extent: In_rel_size = log of (total affected shoreline [km] divided by total sampled market area [km2]).

Substitute effect :

- sub_frac = proportion of water bodies of the same hydrological type affected by the water quality change, within affected state(s).
 - For lakes measured as proportional surface area.
 - For rivers and bays measured as proportional shoreline.

Results for Core Environmental & Resource Variables

Variable	Coefficient Estimates	Standard Errors
Ln_ar_ratio	-0.073	(0.025)***
Sub_frac	0.668	(0.181)***
In_ar_agr	- 0.392	(0.091)***
Inquality_ch	0.299	(0.106)***
Inbase	-0.036	(0.123)

Case study : WTP for Water Quality Improvements in Trinity Watershed, TX

- River Miles: 1,688 miles
- Expected to improve: 1,514 miles (90%)
- Average BL WQI : 53.8
- Average \triangle WQI :1.4
- Market Extent:
 Ln_ar_ratio = -0.492
- Substitute effect:
 Sub_frac = 0.15
- Households: 3.4 million

Results for Alternative Model Specifications

Models	Per Household WTP	Total WTP (Millions)
New Generation MRM	\$49.07	\$164.2
MRM without Geospatial Variables - No Adjustment	\$74.09	\$247.97
MRM without Geospatial Variables WTP Adjusted based on <i>sub_frac</i>	\$11.41	\$39.1

Conclusions

- Geospatial and substitution effects alone have substantial effects on the estimated WTP value.
- Using ad hoc adjustments to account for omission of geospatial variables in existing MRMs is likely to understate benefits of water quality improvements
 - Incorporating substitute effect in the model as opposed to ad hoc adjustments increases total WTP 4 times from \$39.1 million to \$164 million
- The use of benefit function transfers that ignore geospatial characteristics may lead to biased estimates of benefits of water quality improvements